Experimental photodynamic therapy for liver cancer cell-implanted nude mice by an indole-3-acetic acid and intense pulsed light combination.

نویسندگان

  • Kyoung-Chan Park
  • So-Young Kim
  • Dong-Seok Kim
چکیده

Recently, indole-3-acetic acid (IAA) has been introduced as a new cancer therapeutic agent through oxidative decarboxylation by horseradish peroxidase (HRP). The purpose of this study was to determine the therapeutic feasibility of IAA/light combination against liver cancer. SK-HEP-1 cells were irradiated with UVB or visible light (518 nm) in the presence of IAA. Cell viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Then, IAA was injected in SK-HEP-1 liver cancer cell-implanted nude mice, and the tumor area was irradiated with intense pulsed light (IPL). Then, tissue was taken for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay and immunohistochemical staining for 8-hydroxy-deoxyguanosine (8-OHdG), p53, caspase-3, and proliferating cell nuclear antigen (PCNA). In vitro experiments demonstrated that IAA alone was not cytotoxic, but activated IAA by HRP or light caused cell death. In vivo experiments showed that IAA/IPL treatment caused regression of tumor cells in SK-HEP-1-implanted nude mice. The TUNEL assay showed that IAA/IPL induced cancer cell apoptosis, and this was confirmed by increases in 8-OHdG, p53, and caspase-3 in IAA/IPL-treated mice. In contrast, IPL alone did not induce apoptosis, indicating that the apoptotic effect resulted from activated IAA by light. In summary, we showed that IAA/light induced tumor regression in SK-HEP-1-implanted nude mice. These results suggest the potential use of IAA/light combination in liver cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid).

Indole-3-acetic acid (plant auxin) has low toxicity but dramatically enhances the killing of mammalian cells on illuminating phenothiazinium dyes with red light. Suitable dyes include toluidine blue, used in cancer diagnosis because of localization in tumors, and methylene blue, used in experimental photodynamic therapy of cancer. The photosensitized oxidation of indole acetic acid forms a free...

متن کامل

Radicals from Plant Auxin (Indole-3-Acetic Acid) Enhancing the Efficacy of Photodynamic Cancer Therapy

Indole-3-acetic acid (plant auxin) has low toxicity but dramatically enhances the killing of mammalian cells on illuminating phenothiazinium dyes with red light. Suitable dyes include toluidine blue, used in cancer diagnosis because of localization in tumors, and methylene blue, used in experimental photodynamic therapy of cancer. The photosensitized oxidation of indole acetic acid forms a free...

متن کامل

Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...

متن کامل

Effect of Silver Nanoparticles on Improving the Efficacy of 5-Aminolevulinic Acid-Induced Photodynamic Therapy

Introduction: The most important limitation of 5-aminolevulinic acid (5-ALA)-induced photodynamic therapy (PDT) is the efficacy of the cells in converting 5-ALA to protoporphyrin IX. The present study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) with the photosensitivity at the surface plasmon resonance wavelength on 5-ALA-mediated PDT. Material and Methods: First of a...

متن کامل

مقایسه اثر دو منبع نور لیزری متفاوت بر بازده درمان فتودینامیکی سرطان پستان در شرایط برون تنی

Background and Objective: Photodynamic therapy is a new therapeutic modality for the treatment of cancer. Photodynamic therapy uses an inactive drug and a light source to activate the drug to produce reactive oxygen species that destroy the cancer cells. In the present study, the effect of two different laser light sources on the efficiency of photodynamic therapy was evaluated using a breast c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2009